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Abstract This paper considers the finite-time ruin problem for the classical risk model

where the ruin occurs at claim instants. In order to study more ruin related quantities

at claim (ruin) instants, the joint trivariate probability density function of the surplus

after the second last claim before ruin, the surplus prior to ruin and the deficit immedi-

ately after ruin at these ruin moments is derived. The corresponding expected penalty

on three variates as a function of the initial surplus is introduced and the recursive

method for evaluating the expected penalty function at claim instants is proposed.

Finally, numerical illustrations are given when the claim amounts are exponentially

distributed.

Keywords Classical risk model · Finite-time ruin probability · Surplus before ruin ·

Deficit after ruin · Expected penalty function

Mathematics Subject Classification (2000) 62P05 · 60G40 · 91B30

1 Introduction

The ultimate ruin (solvency) probability has been an active research area of insurance

mathematics from the early days of Lundberg. It has simpler analytical expressions

for models of common interests both in theory and practice. The so-called finite-time

ruin probability is the probability that ruin occurs within a finite time horizon. Un-

fortunately, it is difficult to express the finite-time ruin probabilities in a closed form,

even in the classical compound Poisson model (Rolski et al. 1999). Hence, the approxi-

mation of the finite-time ruin probability and related quantities becomes essential and

important in practice for risk management.
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2

Consider a classical risk model in which the surplus process {U(t); t ≥ 0} with

initial surplus u ≥ 0 is given by

U(t) = u+ ct−

N(t)
X

i=1

Xi , t ≥ 0 , (1.1)

where c is the constant premium rate and {Xi}
∞
i=1 are i.i.d. random variables rep-

resenting the individual claim amounts, with common probability distribution func-

tion (d.f.) F , density f , mean 1/µ and Laplace transform (LT) f̂ . The counting

process {N(t); t ≥ 0} denotes the number of claims up to time t and is defined as

N(t) = max{k : Z1 +Z2 + · · · + Zk ≤ t}, where the interclaim times Zi’s are assumed

to be independent and exponentially distributed random variables with mean 1/λ1.

That is, {N(t); t ≥ 0} is a Poisson process with parameter λ1 > 0. We further assume

that {Zi}i≥1 and {Xi}i≥1 are independent.

Let τ = inf{t | U(t) < 0} be the time of ruin with τ = ∞ if ruin does not occur.

Define the probability of ruin by time t by

ψ(u, t) = Pr{τ ≤ t | U(0) = u} , u, t ≥ 0 ,

and the probability of non-ruin up to time t by σ(u, t) = 1−ψ(u, t). Then the probability

of ultimate ruin as a function of the initial surplus U(0) = u ≥ 0 is defined by

ψ(u) = ψ(u,∞) = Pr{τ <∞ | U(0) = u} , u ≥ 0 .

We assume that the positive loading condition holds, i.e.,

c >
λ1

µ
, (1.2)

and hence ψ(u) < 1. It is well-known (Gerber 1979) that the non-ruin function σ(u, t)

satisfies the following partial integro-differential equation

c
∂σ(u, t)

∂u
=
∂σ(u, t)

∂t
+ λ1 σ(u, t) − λ1

Z u

0
σ(u− y, t)dF (y) , u, t ≥ 0 . (1.3)

Solving equation (1.3) in general is difficult though is not impossible. Some tech-

niques are employed and calculating algorithms are proposed to obtain and to approxi-

mate the finite-time ruin probabilities. Among related research in the literature of ruin

theory, An algorithm for approximating by discretizing and recursion the finite time

survival probabilities for the classical risk model was presented (Dickson and Waters

1991). An exact analytical expression, with the help of Appell polynomials, for σ(u, t)

in the classical risk model with integer-valued claim amounts was obtained (Picard and

Lefèvre 1997). Their method was numerically examined and extended (Ignatova and

Kaishevb 2001; De Vylder and Goovaerts 1999; Lefèvre and Loisel 2008). Numerical

evaluation methods (algorithms) for calculating the probability of ruin in finite time for

the classical risk model were reviewed and compared (Dickson 1999). Explicit formulas

were presented for the LT in time of the multivariate finite-time ruin probabilities (by

including the deficit at ruin) of the classical risk model with phase-type claims and

Sparre Andersen model with phase-type interarrivals and claims (Avram and Usábel

2003, 2004). This LT in time is with respect to the derivative of the finite-time ruin
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3

probabilities, and actually the expected probability of ruin before an exponential hori-

zon, which can be seen as a direct approximation to the finite ruin probabilities. Re-

cently, the explicit expressions were derived (Garcia 2005) for the finite-time survival

probabilities in the classical risk model can be obtained through the inversion of the

double LT of the distribution of time to ruin, when claim amounts are Erlang(2) and

mixed exponential distributed.

Apart from these methods for obtaining and approximating the finite-time ruin

probability, a recursive method for computing these probabilities at claim instants was

proposed (Stanford and Ströınski 1994) for the classical compound Poisson risk process

with phase-type claim amounts. As explained in their paper, the ruin occurs upon the

payment of claims, and hence the approach by looking at the surplus process embedded

at claim instants provides an alternative and efficient approximation to the finite-time

ruin probability at each instant of the claims. Explicit formulas were obtained for the

probability of ruin at the arrival of the nth claim when the claims are exponentially,

mixture of two exponentials and Erlang(2) distributed. The recursive algorithm was

also built for the cases where claim amounts follow the mixture of m exponentials and

the Erlang(n) distributions. The same problem for some non-Poisson risk models was

investigated (Stanford et al. 2000).

The aim of this paper is to study more ruin related quantities at claim instants

for the classical risk model. To do so, we first introduce a defective joint probability

density function of three random variables, the surplus right after the (n− 1)th claim,

the surplus prior to ruin and the deficit immediately after ruin, if ruin occurs at the

nth claim, and then evaluate the corresponding expected trivariate penalty function

at the ruin moment. This is partially motivated by the expected discounted penalty

function at ruin (Gerber and Shiu 1998), which provides an unified treatment of the

time of ruin, the surplus prior to ruin and the deficit immediately after ruin. It is worth

mentioning that though there are vast of papers appeared in studying this expected

discounted penalty function for various risk models, all of them feature the ultimate

ruin problem. In addition, to include the random variable of the surplus right after

the (n − 1)th claim (one claim before ruin) in the joint probability density function

is a natural consideration following Stanford and Ströınski (1994); in their paper, the

evaluation of the ruin probability at nth claim instant depends fairly on pn−1(y;u),

the defective probability density function corresponding to the probability of non-ruin

up to (n− 1)th claim with the remaining surplus no bigger than y and initial surplus

u. Note that a recent discussion (Woo 2009) presented an explicit expression of the

joint probability density of the time of ruin and these three variables, which in theory

can be used to evaluation the quantities discussed in this paper. The evaluation of the

finite ruin related quantities at claim instants presented here, nevertheless, provides an

alternative approach.

Recursively evaluation of proposed expected penalty function at claim instants

are naturally developed. One crucial component in our derivations is pn(y;u). The

recursive method for computing its LT, p̂n, was provided (Stanford and Stroinski 1994)

for some distributions within the phase-type distribution family. With the help of the

Dickson-Hipp operator, we are able to obtain the explicit recursive formulas for pn and

p̂n when the claim amounts follow the mixture of exponentials distribution; hence the

recursion result on p̂n (Stanford and Stroinski 1994) for the mixture of two exponentials

is extended. The recursion procedure for evaluating the expected penalty due at the

moment of the ruin is also provided.
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Now we present some preliminary thoughts (Stanford and Stroinski 1994). Denote

by Ri = cZi the so-called inter-claim revenue earned between the (i − 1)th and ith

claims, and by Wi =
Pi

j=1 Zj the arrival time of the ith claim. It is clear that Ri’s are

also exponentially distributed with mean 1/λ, where λ = λ1/c. The surplus in (1.1)

can also be written as

U(t) = u+

N(t)
X

i=1

(Ri −Xi) , t ≥ 0 ,

where random variable Ri −Xi is the difference between the premium income earned

in time interval (Wi−1,Wi] and the ith claim amount; called (Stanford and Stroinski

1994) this the “increment” between the (i − 1)th and ith claims. Let g(y) (defined

on (−∞,∞) as y can be negative) be the common density function of i.i.d. random

variables Ri −Xi, i = 1, 2, . . ., G(y) be its d.f. and ĝ(s) =
R∞
−∞ e−syg(y)dy be its LT.

Since the random variable R1−X1 is the difference between the inter-claim earning

and the claim amount, its LT can be easily obtained as

ĝ(s) =
λ

s+ λ
f̂(−s) . (1.4)

Further by conditioning on one of two random variables the expression of the distribu-

tion function G(y) is given by

G(y) =

(

R∞
0 [1 − e−λ(y+x)]f(x)dx , y ≥ 0

1 −
R∞
0 [F (x− y)]λe−λxdx , y < 0

.

Then the density function g(y) can be obtained by differentiating G(y):

g(y) =

(

λe−λyf̂(λ) = λe−λy Tλf(0) , y ≥ 0
R∞
0 λe−λxf(x− y)dx = λTλf(−y) , y < 0

, (1.5)

where Tr is an operator (Dickson and Hipp 2001) for a real-valued function p and with

respect to a complex number r, defined by

Trp(y) =

Z ∞

y

e−r(t−y)p(t)dt , y ≥ 0 . (1.6)

It is clear that p̂(s) = Tsp(0). Moreover, for distinct complex numbers r1 and r2,

Tr1
Tr2

p(y) = Tr2
Tr1

p(y) =
Tr1

p(y) − Tr2
p(y)

r2 − r1
, r1 6= r2 ∈ C , y ≥ 0 . (1.7)

By these notations, (1.4) can be written as

ĝ(s) =
λ

s+ λ
T(−s)f(0) = λT(−s)Tλf(0) +

λ

s+ λ
Tλf(0) . (1.8)

Let pn(y;u) be the defective probability density function corresponding to the

probability of non-ruin up to nth claim with the remaining surplus no bigger than y

with the initial surplus U(0) = u ≥ 0, i.e.,

pn(y;u) =
∂

∂y
Pr{τ ≥Wn and U(Wn) ≤ y} , y ≥ 0 ,
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which is an important quantity for our further derivations. By the fact that U(Wn) =

U(Wn−1) +Rn −Xn, that is, the surplus after the nth claim is the sum of the surplus

after the (n− 1)th claim and the nth increment, we have

pn(y;u) =

Z ∞

0
pn−1(x;u)g(y − x)dx , n ≥ 1, y, u ≥ 0 , (1.9)

with p0(y;u) the delta function at initial surplus u. The LT of pn(y;u) is defined by

p̂n(s;u) =
R∞
0 e−sypn(y;u)dy. Obviously, p̂n(0; u) is the probability of non-ruin up to

nth claim. Note that equation (1.9) leads to a recursive calculation formula of p̂n(s;u)

which will be presented in next section. Finally, let ψn(u) be the probability of ruin on

nth claim with initial surplus u, and it can be evaluated by

ψn(u) = p̂n−1(0;u) − p̂n(0;u) , u ≥ 0 . (1.10)

The rest of the paper is organized as follows. In Section 2 we derive the joint

density function of the surplus after the second last claim before ruin, the surplus prior

to ruin and the deficit immediately after ruin for ruin occurring at the claim instants. A

general recursive formula for p̂n is derived and recursive formulas when claim amounts

are mixture of exponentials distributed are obtained in Section 3. Then in Section 4,

the expected penalty on three variates at claim instants is defined and its evaluation

is discussed in the mixture of exponentials case. Finally, numerical calculations are

presented in Section 5 for exponential claim amounts.

2 The joint density function of three variates

In this section, we first introduce the trivariate probability density function of the

surplus after the second last claim before ruin, the surplus prior to ruin and the deficit

immediately after ruin, if ruin occurs at the claim instants, then use it to derive the

probability that the ruin occurs at the nth claim arrival instant, for any n ≥ 1, and

some marginal distributions.

For given initial surplus U(0) = u ≥ 0, denote by hn(x, y, z;u) the joint probability

density of the surplus right after the (n− 1)th claim U(Wn−1), the surplus before ruin

U(Wn−) and the deficit immediately after ruin |U(Wn)|, if ruin occurs at the nth claim

instant Wn. Note that y > x holds for hn(x, y, z;u) as the summation of U(Wn−1) and

the nth inter-claim revenue Rn > 0 is equal to U(Wn−). Then

Z ∞

0

Z ∞

0

Z y

0
hn(x, y, z;u)dxdydz = Pr{τ = Wn |U(0) = u} = ψn(u) , u ≥ 0 .

(2.1)

Because of the positive loading condition (1.2), hn(x, y, z;u) is a defective probability

density function.

By probability formula Pr{A∩B ∩C} = Pr{A}Pr{B |A}Pr{C |A∩B} , we have,

for y > x, the following probability

hn(x, y, z;u)dx dy dz = pn−1(x;u)dx · λ e−λ(y−x)dy[1 − F (y)] ·
f(y + z)dz

1 − F (y)
. (2.2)

In (2.2), the first probability corresponds to the event that the ruin occurs at the nth

claim (it has to be non-ruin up to (n−1)th claim) and the surplus U(Wn−1) is between

x and x+ dx, and the second term corresponds to the conditional probability that the
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6

surplus prior to ruin U(Wn−) is between y and y + dy, given that the ruin occurred

at the nth claim and the surplus immediately after the (n− 1)th claim is x, while the

last conditional probability ensures that the deficit at ruin, |U(Wn)|, is z. Hence,

hn(x, y, z; u) =

(

pn−1(x;u)λ e
−λ(y−x) f(y + z) , y > x > 0, z > 0 ,

0 , otherwise .
(2.3)

Its corresponding cumulative distribution function, denoted byHn(x, y, z;u) for x, y, z >

0, can be written as

Hn(x, y, z;u) =

Z z

0

Z min{x,y}

0

Z y

x1

pn−1(x1;u)λ e
−λ(y1−x1) f(y1 + z1)dy1dx1dz1 .

(2.4)

In addition, by (2.3), we can obtain the following proposition for the probability of

ruin at the nth claim instant.

Proposition 1 The probability of ruin at the nth claim instant is given by

ψn(u) = λ

Z ∞

0
pn−1(x;u)T0Tλf(x)dx , n ≥ 1, u ≥ 0 . (2.5)

In particular, ψ1(u) = λ
R∞
u
e−λ(y−u)[1 − F (y)]dy.

Proof By expressions (2.1) and (2.3), and some integral calculations,

ψn(u) =

Z ∞

0

Z ∞

0

Z ∞

x

pn−1(x;u)λ e
−λ(y−x) f(y + z)dydxdz

=

Z ∞

0
pn−1(x;u)

Z ∞

x

λ e−λ(y−x) [1 − F (y)]dydx

=

Z ∞

0
pn−1(x;u)

Z ∞

x

h

f(y) − e−λ(y−x)f(y)
i

dydx

=

Z ∞

0
pn−1(x;u) [T0f(x) − Tλf(x)] dx ,

which leads to (2.5) by property (1.7). When n = 1, the result follows by the fact that

p0(x;u) is the delta function at initial surplus u. ⊓⊔

Note that the evaluation of the probability of ruin at the claim instant relies on the

expression of probability density pn, which seems difficult to be obtained. Equation

(1.9) shows a recursive relationship between pn and pn−1, and a recursion formula

between p̂n(s;u) and p̂n−1(s;u) is shown in the next section.

The joint density function of trivariate given by (2.2) enables us to further obtain

the joint probability density functions of bivariates and univariates. Let hij,n be the

joint probability density function of bivariate (also a function of the initial surplus

u) within three random variables {U(Wn−1), U(Wn−), |U(Wn)|}, i, j = 1, 2, 3, if ruin

occurs at the nth claim instant Wn. Then

h12,n(x, y;u) =

(

pn−1(x;u)λ e
−λ(y−x) T0f(y) , y > x > 0 ,

0 , otherwise ,
(2.6)

h13,n(x, z;u) = pn−1(x;u)λTλf(x+ z) , x, z > 0 , (2.7)

h23,n(y, z;u) = λpn−1 ∗ expλ(y;u) f(y + z) , y, z > 0 , (2.8)
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where function expλ is defined by expλ(x) = e−λ x, for x ≥ 0, and ∗ is the notation

for the convolution of two functions.

Moreover, let hi,n be the probability density function of the ith random variable

in {U(Wn−1), U(Wn−), |U(Wn)|}, i = 1, 2, 3, if ruin occurs at the nth claim instant

Wn. It is easy to obtain that

h1,n(x;u) = pn−1(x;u)λTλT0f(x) , x > 0 , (2.9)

h2,n(y;u) = λ pn−1 ∗ expλ(y;u)T0f(y) , y > 0 , (2.10)

h3,n(z;u) = λ

Z ∞

0
pn−1(x;u)Tλf(x+ z)dx , z > 0 . (2.11)

We remark here that similar to (2.4) the cumulative distribution functions correspond-

ing to densities given by (2.6)-(2.11) can be easily obtained.

3 The recursion of p̂n

As it will be seen that the probability of ruin occurring at the nth claim instant, ψn(u),

and other related quantities to be discussed in the following section depend immediately

on the probability density function pn−1, or p̂n−1. In this section we present some

results regarding the recursive calculation of this important density function. First, we

give the recursive formula of p̂n(s;u) for claim amounts with general density function

f(x). We then derive the recursive formulas for p̂n(s;u), pn(y;u) and ψn(u) for the case

where the claim amounts are mixture of exponentials distributed with the coefficients

to be calculated recursively.

Proposition 2 For u ≥ 0, the recursive formula for p̂n(s;u) is

p̂n(s;u) = p̂n−1(s;u) ĝ(s) − λ

Z ∞

0
pn−1(x;u)T(−s)Tλf(x)dx , n ≥ 1 , (3.1)

with p̂0(s;u) = e−us.

Proof The proof is straightforward. Taking the LTs of both sides of recursion relations

(1.9) and interchanging the order of the integration, we have

p̂n(s;u) =

Z ∞

0

Z ∞

0
e−sypn−1(x;u) g(y − x)dxdy

= p̂n−1(s;u)ĝ(s) −

Z ∞

0
pn−1(x;u)

»Z ∞

x

es(y−x)g(−y)dy

–

dx ,

which is (2.8) in Stanford and Ströınski (1994). Now by expression (1.5), for y > 0,

g(−y) = λTλf(y), then the integration in square brackets above can be written as

Z ∞

x

es(y−x)g(−y)dy = λ

Z ∞

x

es(y−x) Tλf(y)dy = λT(−s)Tλf(x) .

Hence, (3.1) is proved. ⊓⊔
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Remark 1: When the claim amount follows a phase-type distribution with represen-

tation (α, Q), then recursion formula (3.1) reduces to (2.6) in Stanford and Ströınski

(1994), which is

p̂n(s;u) = p̂n−1(s;u) ĝ(s) + ν

Z ∞

0
pn−1(x;u)e

Qxdx(sI +Q)−1q , n ≥ 1 ,

where ν = α(λI − Q)−1 and q = −Qe. An introduction to phase-type distributions,

their properties and applications in risk theory can be found (Neuts 1981).

Remark 2: In (3.1), by letting s = 0 we get

p̂n(0;u) = p̂n−1(0;u) − λ

Z ∞

0
pn−1(x;u)T0Tλf(x)dx , n ≥ 1 ,

which leads immediately to formula (2.5) in Proposition 1 according to evaluation

expression (1.10).

In next subsection, we derive explicit recursions for p̂n, pn and ψn when the claim

amounts are mixture of exponentials distributed.

3.1 Recursive formulas for mixtures of exponentials

Consider the mixture of exponentials distribution with the probability density function

f(x) =

N
X

i=1

qiµi e
−µix , x > 0 , (3.2)

where the q’s and µ’s are positive and
PN

i=1 qi = 1. Without loss of generality we may

assume that µ1 < µ2 < · · · < µN . The LT of (3.2) has the expression

f̂(s) =

N
X

i=1

qi
µi

s+ µi
.

Due to many attractive properties, the mixture of exponentials distribution has

been often used as an alternative one to the single exponential distribution in risk

theory. Its simple rational fraction expression of the LT offers advantages in renewal

theory as well as the stochastic processes modeling. It was showed (Kingman 1966)

that any density on (0,∞) can be approximated arbitrarily closely by a function of the

form (3.2).

It follows from expression (1.5) and (1.8) that

g(y) =

(

λe−λy PN
i=1 qi

µi

λ+µi
, y ≥ 0

λ
PN

i=1 qi
µi

λ+µi
eµiy , y < 0

,

and

ĝ(s) =
λ

λ+ s

N
X

i=1

qi
µi

µi − s
. (3.3)



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

9

In order to get the recursive formula (3.1), we need the expression of T(−s)Tλf(x)

which can be derived as

T(−s)Tλf(x) =
T(−s)f(x) − Tλf(x)

λ+ s
=

N
X

i=1

qiµi

(µi − s)(λ+ µi)
e−µix . (3.4)

Then by (3.3) and (3.4) the recursive formula (3.1) in this case is given by

p̂n(s;u) = λ
N
X

i=1

qiµi

µi − s

»

p̂n−1(s;u)

λ+ s
−
p̂n−1(µi;u)

λ+ µi

–

, n ≥ 1 , (3.5)

with p̂0(s;u) = e−us. We now present the recursion for p̂n(s;u) in the following theo-

rem.

Theorem 1 For mixture of exponentials claim amounts distribution with density func-

tion given by (3.2), the LT of the probability density function of non-ruin up to nth

claim with remaining surplus y, pn(y;u), is given by

p̂n(s;u) =
λn

(λ+ s)n

N
X

in=1

αin
· · ·

N
X

i1=1

αi1TsT
(n)
µi

p0(0) +

n−1
X

l=0

θ
(n)
l+1

(λ+ s)n−l
, n ≥ 1 ,

(3.6)

where αi = qi µi, T
(n)
µi

p0(0) is defined as

T
(n)
µi

p0(0) = Tµin
Tµin−1

· · · Tµi1
p0(0) , i1, · · · , in = 1, 2, . . . , N , (3.7)

and the n-layer coefficients θ
(n)
j can be calculated recursively by

θ
(n)
j = λ

N
X

in=1

αin

2

4

j−1
X

m=0

θ
(n−1)
j−m

(λ+ µin
)m+1 +

c
(n)
in

(λ+ µin
)j

3

5 , 1 ≤ j ≤ n− 1 , (3.8)

θ
(n)
n = λ

N
X

in=1

αin

λ+ µin

p̂n−1(µin
;u) , (3.9)

with starting value θ
(1)
1 = λ

PN
k=1

αk

λ+µk
e−µk u, and lastly c

(n)
k

is defined as

c
(n)
in

= λn−1
N
X

in−1=1

αin−1
· · ·

N
X

i1=1

αi1T
(n)
µi

p0(0) , 1 ≤ in ≤ N .

Proof The proof of expression (3.6) can be done by the method of induction. For n = 1,

note that Tsp0(0) = p̂0(s;u) and then (3.5) gives

p̂1(s;u) = λ
N
X

i=1

qiµi

µi − s

»

Tsp0(0)

λ+ s
−
Tµip0(0)

λ+ µi

–

= λ
N
X

i=1

αi

λ+ s

"

Tsp0(0) − Tµip0(0)

µi − s
+ Tµip0(0)

1
λ+s − 1

λ+µi

µi − s

#

=
λ

λ+ s

"

N
X

i=1

αiTsTµip0(0) +
N
X

i=1

αi

λ+ µi
p̂0(µi;u)

#

,
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which leads to (3.6) for n = 1 case. Assume that (3.6) is true for n− 1 case, that is,

p̂n−1(s;u) =
λn−1

(λ+ s)n−1

N
X

in−1=1

αin−1
· · ·

N
X

i1=1

αi1TsT
(n−1)
µi

p0(0) +

n−2
X

l=0

θ
(n−1)
l+1

(λ+ s)n−1−l
.

Furthermore, we can write

p̂n−1(s;u)
λ+s −

p̂n−1(µin ;u)
λ+µin

µin
− s

=
λn−1

(λ+ s)n

N
X

in−1=1

αin−1
· · ·

N
X

i1=1

αi1

TsT
(n−1)
µi

p0(0) − Tµin
T

(n−1)
µi

p0(0)

µin
− s

+ c
(n)
in

2

4

1
(λ+s)n − 1

(λ+µin )n

µin
− s

3

5+

n−2
X

l=0

θ
(n−1)
l+1

2

4

1
(λ+s)n−l − 1

(λ+µin )n−l

µin
− s

3

5

=
λn−1

(λ+ s)n

N
X

in−1=1

αin−1
· · ·

N
X

i1=1

αi1TsT
(n)
µi

p0(0) + c
(n)
in

n−1
X

k=0

1

(λ+ s)n−k(λ+ µin
)k+1

+

n−2
X

l=0

θ
(n−1)
l+1

n−l−1
X

k=0

1

(λ+ s)n−l−k(λ+ µin
)k+1

. (3.10)

Then it follows from (3.5) and (3.10) that

p̂n(s;u) = λ

N
X

in=1

αin

2

4

p̂n−1(s;u)
λ+s

−
p̂n−1(µin ;u)

λ+µin

µin
− s

+ p̂n−1(µin
;u)

1
λ+s

− 1
λ+µin

µin
− s

3

5

=
λn

(λ+ s)n

N
X

in=1

αin

N
X

in−1=1

αin−1
· · ·

N
X

i1=1

αi1TsT
(n)
µi

p0(0)

+ λ
N
X

in=1

αin
c
(n)
in

n−1
X

k=0

1

(λ+ s)n−k(λ+ µin
)1+k

(3.11)

+ λ

N
X

in=1

αin

n−2
X

l=0

θ
(n−1)
l+1

n−l−1
X

k=0

1

(λ+ s)n−l−k(λ+ µin
)1+k

(3.12)

+
λ

λ+ s

N
X

in=1

αin

λ+ µin

p̂n−1(µin
;u) . (3.13)

By identifying the coefficient of term 1/(λ + s)j for each j in lines (3.11)-(3.13), and

denoting it by θ
(n)
j , for j = 1, 2, . . . , n, we complete the proof of (3.6). ⊓⊔

We remark on the computational aspects of the formulas in Theorem 1 below.

Remark 1: The recursive expression (3.6) involves the computation of the composite

operator Tr on function p0(y;u) which is a delta function at the initial surplus u.

According to a relationship (Gerber and Shiu 2005, Eq. 10.1) between the operator Tr

and the corresponding divided difference, (3.7) can be rewritten as

T
(n)
µi

p0(0;u) = (−1)n−1p̂0[µin
, µin−1

, . . . , µi1 ; u] , (3.14)
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where p̂0[µin
, µin−1

, . . . , µi1 ;u] is the (n − 1)th order divided difference on n points

µi1 , µi2 , . . . , µin
, defined by

p̂0[µin
, µin−1

, . . . , µi1 ;u] =
p̂0[µin

, µin−1
, . . . , µi2 ;u] − p̂0[µin−1

, µin−2
, . . . , µi1 ;u]

µin
− µi1

,

with p̂0[µij
;u] = p̂(µij

;u) = e−µij
u; this relationship implies that the evaluation of

(3.6) relates directly to the computation of divided differences of the exponential func-

tions. The computationally relevant properties were investigated (McCurdy et al. 1984).

Remark 2: In the case that µi1 , µi2 , . . . , µin
are distinct numbers, it follows from the

well-known divided difference property (Gerber and Shiu 2005, Eq. 3.13) and (3.14)

that (3.7) can be further expressed as

T
(n)
µi

p0(0) = (−1)np̂0[µin
, µin−1

, . . . , µi1 ] =
n
X

j=1

e
−µij

u

Qk
l=1,l 6=j(µij

− µil
)
.

Furthermore, by the definition of operator Tr on function p in (1.6), we have that

TsTrp(0) =

Z ∞

0
e−s x[Trp(x)]dx ,

which shows that the Laplace inverse of TsTrp(0) is Trp(x). In general, we have the

following formula for the Laplace inverse of [Ts(
Qm

i=1 Tri)p](0):

L−1

"

Ts

 

m
Y

i=1

Tri

!

p(0)

#

=

 

m
Y

i=1

Tri

!

p(x) . (3.15)

Thus by (3.15) and other general LT properties, we can easily derive the explicit Laplace

inversion of p̂n(s;u) given in (3.6) and present it in the corollary below.

Corollary 1 For mixture of exponentials claim amounts distribution with density func-

tion given by (3.2), the probability density function pn(y;u), for n ≥ 1, is given by

pn(y;u) =
λn

(n− 1)!

N
X

in=1

αin
· · ·

N
X

i1=1

αi1(yn−1e−λy) ∗ T
(n)
µi

p0(y) +

n−1
X

l=0

θ
(n)
l+1

yn−l−1e−λy

(n− l − 1)!
,

where coefficients θ
(n)
j are to be determined by (3.8) and (3.9).

Letting s = 0 in (3.5), we can also obtain the probability of ruin at claim instants

according to (1.10), below.

Corollary 2 For mixture of exponentials claim amounts distribution with density func-

tion given by (3.2), the probability of ruin at the nth claim instant is given by

ψn(u) = λ

N
X

j=1

qj
λ+ µj

p̂n−1(µj ;u) , n ≥ 1 ,

where p̂n−1(µj ; u) can be obtained by (3.6).
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We now consider a special case where the claim amounts are exponentially dis-

tributed with mean 1/µ, that is, f(x) = µ e−µx, for x > 0, and f̂(s) = µ/(s + µ).

Then

g(y) =

(

λµ
λ+µ e

−λy , y ≥ 0
λµ

λ+µ
eµy , y < 0

, ĝ(s) =
λµ

(λ+ s)(µ− s)
,

and the recursive formulas for p̂n(s;u) and ψn(u) are presented in the following corol-

lary.

Corollary 3 For exponentially distributed claim amounts with mean 1/µ, the LT of

the probability density function of non-ruin up to nth claim with remaining surplus y,

pn(y;u), is given by

p̂n(s;u) =

„

λµ

λ+ s

«n

Ts

h

T
(n)
µ p0

i

(0) +

n−1
X

l=0

θ
(n)
l+1

(λ+ s)n−l
, n ≥ 1 , (3.16)

where operator Ts[T
(n)
µ ] = Ts[T

n
µ ] and coefficients θ

(n)
j can be calculated recursively by

θ
(n)
j = λµ

2

4

j−1
X

m=0

θ
(n−1)
j−m

(λ+ µ)m+1
+

c(n)

(λ+ µ)j

3

5 , 1 ≤ j ≤ n− 1

θ
(n)
n =

λµ

λ+ µ
p̂n−1(µ;u) , (3.17)

with starting value θ
(1)
1 = e−µuλµ/(λ+ µ), and c(n) is defined as

c(n) = (λµ)n−1T
(n)
µ p0(0) =

(−λµ)n−1

(n− 1)!

d(n−1)

dµ(n−1)
Tµp0(0) , 1 ≤ in ≤ N . (3.18)

Moreover, the probability of ruin at the nth claim instant is given by

ψn(u) =
λ

λ+ µ
p̂n−1(µ;u) , n ≥ 1 . (3.19)

Note that the last equation in (3.18) follows from a property of operator Tµ (Gerber

and Shiu 2005), namely, for real-valued function p,

T
(n)
r p(x) =

(−1)n−1

(n− 1)!

d(n−1)

dr(n−1)
Trp(x) , r ∈ C, x > 0 . (3.20)

Remark: Alternative recursions of pn(y;u) and ψn(u) were obtained (Stanford and

Ströınski 1994) when the distribution of claim amounts is exponential; they are

p̂n(s;u) = e−µu

2

4

n
X

j=1

c
(n)
j

„

λ

λ+ s

«j

(1 −Θ)n−j

+(µu)n
„

λ

λ+ s

«n ∞
X

k=n

[(µ− s)u]k−n

k!

#

, n ≥ 1 ,

(3.21)
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and

ψn(u) =
(1 −Θ)n

Θ
e−µuc

(n)
1 , n ≥ 1 ,

where Θ = µ/(λ+ µ), and coefficients c
(n)
j can be calculated recursively by

c
(n)
j = Θ

2

4

n−1
X

k=max(1,j−1)

c
(n−1)
k

+
(µu)n−1

(n− 1)!

3

5 , j = 1, . . . , n, n ≥ 2 ,

with c
(1)
1 = Θ. It can be verified that both recursions (3.16) and (3.21) produce the

same result.

4 The expected penalty at ruin

Let w(x, y), for x, y ≥ 0, be a non-negative penalty function. Let δ ≥ 0 be the force

of interest for valuation. Given the initial surplus u, the expected discounted penalty

function at ruin (Gerber and Shiu 1998), φ(u), is defined as

φ(u) = E

h

e−δ τ w(U(τ−), |U(τ )|)I(τ <∞)
˛

˛ U(0) = u
i

, u ≥ 0 , (4.1)

for the surplus prior to ruin U(τ−) and the deficit at ruin |U(τ )| , where I(·) is the

indicator function. In particular, when δ = 0 and w(x, y) = 1, (4.1) simplifies to ψ(u),

the ruin probability. By the natural of the finite time ruin problem discussed in this

paper, instead of considering the expected discounted penalty at time of ruin τ > 0,

we defined the expected penalty on three ruin related quantities if ruin occurs at the

nth claim instant as

φn(u) = E [w(U(Wn−1), U(Wn−), |U(Wn)|)I(τ = Wn) | U(0) = u] , u ≥ 0 ,

(4.2)

where w(x, y, z), for x, y, z ≥ 0, is a non-negative penalty function on the surplus right

after the (n − 1)th claim U(Wn−1), the surplus before ruin U(Wn−) and the deficit

immediately after ruin |U(Wn)|. The joint trivariate probability density given in (2.3)

enables us to evaluate the expected values defined in (4.2) as follows:

φn(u) =

Z ∞

0

Z ∞

x

Z ∞

0
w(x, y, z) pn−1(x;u)λ e

−λ(y−x)f(y + z)dzdydx

=

Z ∞

0

Z ∞

x

pn−1(x;u)λ e
−λ(y−x) ω(x, y)dydx

= λ

Z ∞

0
pn−1(x;u)̟(x)dx , u ≥ 0 , (4.3)

where ω(x, y) =
R∞
0 w(x, y, z)f(y + z)dz and

̟(x) =

Z ∞

x

e−λ(y−x) ω(x, y)dy , x ≥ 0 (4.4)

which can be seen as the operator Tλ on the second variable of the bivariate function

ω evaluated at x. Note that the calculation of φn(u) given by (4.3) depends on the ex-

pression of pn−1(x;u) which is discussed in previous section. In addition, if the penalty
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function is independent of one or two of three random variables, we can also use one of

the probability density functions given by (2.6)-(2.11) to calculate the corresponding

expected penalty.

Alternatively, we can evaluate φn(u) recursively. Indeed, if ruin occurs at the mo-

ment of the first claim arrival, by assuming that the surplus at the previous claim time

is u (initial surplus) and the definition of p0(x;u), we have

φ1(u) =

Z ∞

u

Z ∞

0
w(u, y, z)λ e−λ(y−u)f(y + z)dzdy

=

Z ∞

0
λ e−λt

Z ∞

u+t

w(u, u+ t, y − (u+ t)) f(y)dydt u ≥ 0 , (4.5)

where the second equality is obtained by the variable change in the double integration.

Note that (4.5) can have the following interpretation. The probability that the first

claim occurs between time t and time t + dt is λ e−λtdt (with the operational claim

intensity rate λ) and the claim amount y has to be y > u+t to have ruin occured at the

first claim instant (with probability f(y)dy). Thus by the law of iterated expectations,

(4.5) is the double integration of penalty function w with respect to the claim time t

and the claim amount y of the first claim. Using a similar argument to the case when

ruin occurs at the nth claim instant, that is, if ruin does not occur at the first claim

time t with claim amount being less than u+t, then the ruin must occur at the (n−1)th

claim instant, we get the following recursive formula for φn(u):

φn(u) =

Z ∞

0
λ e−λt

Z u+t

0
φn−1(u+ t− y) f(y)dydt

=

Z ∞

u

λ e−λ(x−u)
Z x

0
φn−1(x− y) f(y)dydx

= λTλ[φn−1 ∗ f ](u)

= λ [f ∗ Tλφn−1(u) + Tλφn−1(0) · Tλf(u)] , u ≥ 0, n ≥ 2 ,

with starting value φ1(u) given by (4.5). Note that an equivalence relation (Gerber and

Shiu 2005, Eq. 10.2) has been used in the last equality above.

Taking special forms of the penalty function w in equation (4.2), we are able to

evaluate some finite-time ruin related quantities. It is obvious that if w(x, y, z) = 1,

then φn(u) = ψn(u), the probability of ruin at the nth claim instant. If we assume that

w(x1, y1, z1) = I(x1 ≤ x, y1 ≤ y, z1 ≤ z), then φn(u) is the joint cumulative distri-

bution function of the trivariate Hn(x, y, z) given in (2.4). If we assume, for instance,

that w(x, y, z) = ylzm for y, z > 0, then function φn(u) is the joint lth moment of

the surplus prior to ruin and mth moment of the deficit immediately after ruin if ruin

occurs at the arrival time of the nth claim, and can be evaluated by (4.3) or directly

by using the joint density function h23,n(y, z) given in (2.8). We illustrate some of

special cases in the following section for the mixture of exponentials distributed claim

amounts.
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4.1 Expected penalty at ruin for mixtures of exponentials

When the claim amounts follow mixtures of exponentials with density function given

by (3.2), the joint probability density function (2.3) is of the form

hn(x, y, z;u) =

(

pn−1(x;u)λ e
λxPN

i=1 qiµi e
−[(λ+µi)y+µiz] , y > x > 0, z > 0 ,

0 , otherwise .

We then have the following expression for ̟(x) defined in (4.4):

̟(x) =

Z ∞

x

e−λ(y−x)

"

Z ∞

0
w(x, y, z)

N
X

i=1

qiµi e
−µi(y+z)dz

#

dy

=
N
X

i=1

qiµi e
−µix

Z ∞

x

e−(λ+µi)(y−x)
»Z ∞

0
w(x, y, z)e−µizdz

–

dy

=

N
X

i=1

qiµi e
−µix

Z ∞

x

e−(λ+µi)(y−x)[ŵ(x, y;µi)]dy

=

N
X

i=1

qiµi e
−µixT(λ+µi)ŵ(x, x;µi) , x ≥ 0 , (4.6)

where ŵ(x, y;µi) =
R∞
0 e−µizw(x, y, z)dz is the LT of function w with respect to the

third variable valuated at µi, and the operator T(λ+µi) in (4.6) is with respect to the

second variable of ŵ. It follows that the expression for φn(u) given in (4.3) is:

φn(u) = λ

N
X

i=1

qiµi

Z ∞

0
e−µix pn−1(x;u)T(λ+µi)ŵ(x, x;µi)dx , u ≥ 0 . (4.7)

In some special cases of penalty function w, (4.7) leads to attractive formulas which

can be calculated by results obtained in Section 3.1. Below are some illustrations.

(i) Penalty as a function of surplus after the second last claim before ruin.

In this case, w(x, y, z) = w(x) and (4.6) is simply

̟(x) =

N
X

i=1

qi
λ+ µi

e−µixw(x) , x ≥ 0 ,

and consequently (4.7) simplifies to the expected penalty on the surplus after the second

last claim before ruin only, given by

φn(u) = λ

N
X

i=1

qi
λ+ µi

Z ∞

0
e−µix w(x)pn−1(x;u)dx , u ≥ 0 . (4.8)

Note that (4.8) can also be obtained by the density function h1,n(z;u) defined in (2.9).

In particular, if w(x) = xk, then (4.8) is the kth moment of the surplus after the

(n − 1)th claim if ruin occurs at the nth claim instant and we denote it by M
(k)
1,n(u).

Since
Z ∞

0
e−µix xkpn−1(x;u)dx = (−1)kp̂

(k)
n−1(µi; u) ,
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where p̂
(k)
n−1(µi;u) is the kth order of derivative of p̂n−1(s;u) with respect to s valuated

at µi, and hence we get from (4.8) that M
(k)
1,n(u) is simply

M
(k)
1,n(u) = λ

N
X

i=1

qi
λ+ µi

(−1)kp̂
(k)
n−1(µi;u) , u ≥ 0, n, k ≥ 1 ,

where p̂
(k)
n−1(µi;u) can be derived from (3.6) in Theorem 1.

(ii) The joint moment of the surplus prior to ruin and the deficit right after

ruin. Consider the case where w(x, y, z) = w(y, z), the penalty as a function of the

surplus prior to ruin and the deficit right after ruin. In this case, ̟(x) given by (4.6)

becomes

̟(x) =
N
X

i=1

qiµie
−µixT(λ+µi)ŵ(x;µi) , x ≥ 0 , (4.9)

and consequently formula (4.7) is of the form

φn(u) = λ

N
X

i=1

qiµi

Z ∞

0
e−µixpn−1(x;u)T(λ+µi)ŵ(x;µi)dx , u ≥ 0 , n ≥ 1 . (4.10)

Particularly, let w(y, z) = ylzm, then φn(u) is the joint lth moment of the surplus

prior to ruin and mth moment of the deficit immediately after ruin if ruin occurs at

the nth claim instant, denoted by M
(l,m)
23,n (u). In this case, (4.9) reduces to

̟(x) =
N
X

i=1

qi
m!

µm
i

e−µix
Z ∞

x

e−(λ+µi)(y−x) yldy

=

N
X

i=1

qi
m!

µm
i

e−µix
l
X

j=0

l!xl−j

(l − j)!(λ+ µi)j+1
, x ≥ 0 ,

and (4.10) reduces to, for n, l,m ≥ 1,

M
(l,m)
23,n (u) = λ

N
X

i=1

qi
m!

µm
i

l
X

j=0

l!

(l − j)!(λ + µi)j+1

Z ∞

0
e−µixxl−jpn−1(x;u)dx

= λ
N
X

i=1

qi
m!

µm
i

l
X

j=0

(−1)l−j l!

(l − j)!(λ + µi)j+1
p̂
(l−j)
n−1 (µi;u) , u ≥ 0 , (4.11)

where p̂
(l−j)
n−1 (µi;u), for j = 0, 1, . . . , l, with p̂

(0)
n−1(µi;u) = p̂n−1(µi;u), can be obtained

from (3.6).

If m = 0, M
(l,m)
23,n (u) further reduces to the lth moment of the surplus prior to ruin

at the time of ruin which occurs at the nth claim instant, denoted by M
(l)
2,n(u), and

expression (4.11) simplifies to

M
(l)
2,n(u) = λ

N
X

i=1

qi

l
X

j=0

(−1)l−j l!

(l − j)!(λ+ µi)j+1
p̂
(l−j)
n−1 (µi;u) , u ≥ 0 , l, n ≥ 1 . (4.12)
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From (4.12) we can also obtain the following recursive formula for calculating M
(l)
2,n(u):

M
(l)
2,n(u) = λ

N
X

i=1

qi
(−1)l

λ+ µi
p̂
(l)
n−1(µi;u) +

l

λ+ µi
M

(l−1)
2,n (u) , u ≥ 0 , l ≥ 2, n ≥ 1 ,

with the expectation of the surplus immediately before ruin at the nth claim instant

M
(1)
2,n(u) = λ

N
X

i=1

qi

"

−
p̂′n−1(µi;u)

λ+ µi
+
p̂n−1(µi;u)

(λ+ µi)2

#

, u ≥ 0 , n ≥ 1 . (4.13)

Furthermore, by setting l = 0, M
(l,m)
23,n (u) reduces to the mth moment of the deficit

at ruin if ruin occurs at the nth claim instant, denoted by M
(m)
3,n (u), and expression

(4.11) is simply

M
(m)
3,n (u) = λ

N
X

i=1

qi
m!

(λ+ µi)µ
m
i

p̂n−1(µi;u) , u ≥ 0, n,m ≥ 1 .

In particular, M
(1)
3,n(u) is the expected deficit at ruin occuring at the nth claim, and it

is of the form

M
(1)
3,n(u) = λ

N
X

i=1

qi
(λ+ µi)µi

p̂n−1(µi;u) , u ≥ 0, n ≥ 1 . (4.14)

Finally, by letting l = m = 1 in (4.11) and by expressions (4.13) and (4.14), we obtain

the covariance of the surplus prior to ruin U(Wn−) and the deficit immediately after

ruin |U(Wn)| if ruin occurs at the nth claim instant, denoted by C23,n(u), as follows:

C23,n(u) =λ
N
X

i=1

qi

"

−
p̂′n−1(µi;u)

λ+ µi
+
p̂n−1(µi; u)

(λ+ µi)2

#

0

@

1

µi
− λ

N
X

j=1

qj p̂n−1(µj ; u)

(λ+ µj)µj

1

A .

(4.15)

5 Examples

In this section, we illustrate some numerical calculations when the claim amounts

are exponentially distributed. First, we computer the ruin probability as a function

of initial surplus u, ψn(u), at the nth claim instant using results in Corollary 3. By

comparing formulas (3.19) and (3.17), we have that

ψn(u) =
θ
(n)
n

µ
, u ≥ 0 .

By (3.17), it is easy to obtain that θ
(1)
1 = e−µuλµ/(λ+ µ), and that

θ
(2)
2 =

„

λµ

λ+ µ

«2 »

u+
1

λ+ µ

–

e−µu =

„

λµ

λ+ µ

«2 »

u+
κ1,1

λ+ µ

–

e−µu ,
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with κ1,1 = 1. Then after straightforward but somewhat tedious derivations, one can

get the following recursive algorithm:

θ
(3)
3 =

„

λµ

λ+ µ

«3 »
u2

2!
+

κ2,1

λ+ µ
u+

κ2,2

(λ+ µ)2

–

e−µu

with κ2,1 = κ2,2 = 1 + κ1,1, and in general,

θ
(n)
n =

„

λµ

λ+ µ

«n »
un−1

(n− 1)!
+
κn−1,1

λ+ µ

un−2

(n− 2)!
+ · · · +

κn−1,n−2

(λ+ µ)n−2
u+

κn−1,n−1

(λ+ µ)n−1

–

e−µu ,

where simply

κn−1,j = 1 +

j
X

l=1

κn−2,l , j = 1, 2, . . . , n− 2 ,

and

κn−1,n−2 = κn−1,n−1 .

Fig. 1 Cumulative probability of ruin at claim instants.

Note that the cumulative probability of ruin,
Pn

m=1 ψm(u), can be used to approx-

imate the corresponding ultimate ruin probability ψ(u) by the fact that

ψ(u) =
∞
X

n=1

ψn(u) , u ≥ 0 .

Figure 1 shows the cumulative probability of ruin when n = 50, 100, 150, 200, respec-

tively, and compares with the well-known ultimate ruin probability ψ(u) for 0 ≤ u ≤ 20

in this case, given by

ψ(u) =
λ

µ
e−(µ−λ)u , u ≥ 1 .

The parameters in Figure 1 are µ = 1.2 and λ = 1 so that the positive loading factor

(µ/λ−1) is 20%. As it is showed in the graph, the degree of accuracy of approximations



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

19

increases as the number of claims used for cumulations increases, and is higher when

u is relatively small than other values of u.

Next, we calculate, for exponentially distributed claim amounts, that the expecta-

tion of the surplus prior to ruin, M
(1)
2,n(u), and the expected deficit at ruin, M

(1)
3,n(u), if

ruin occurs at the nth claim. In this case, expressions (4.13) and (4.14) simplify to

M
(1)
2,n(u) = λ

"

−
p̂′n−1(µ; u)

λ+ µ
+
p̂n−1(µ;u)

(λ+ µ)2

#

, u ≥ 0, n ≥ 1 , (5.1)

M
(1)
3,n(u) =

λ

(λ+ µ)µ
p̂n−1(µ;u) =

ψn(u)

µ
, u ≥ 0, n ≥ 1 . (5.2)

Finally, the covariance of the surplus prior to ruin and the deficit immediately after

ruin if ruin occurs at the nth claim instant, given by (4.15), simplifies to, for n ≥ 1,

C23,n(u) =
λ

µ

"

−
p̂′n−1(µ; u)

λ+ µ
+
p̂n−1(µ;u)

(λ+ µ)2

#

„

1 −
λp̂n−1(µ; u)

(λ+ µ)

«

, u ≥ 0 . (5.3)

In order to computer these expectations and covariances, we also need to calculate

p̂′n−1(µ;u). By (3.16), we have

p̂n−1(s;u) =

„

λµ

λ+ s

«n−1

Ts

h

T
(n−1)
µ p0

i

(0) +
n−2
X

l=0

θ
(n−1)
l+1

(λ+ s)n−1−l
. (5.4)

Differentiating both sides of equation (5.4) gives

p̂′n−1(s;u) = −(n− 1)
(λµ)n−1

(λ+ s)n
Ts

h

T
(n−1)
µ p0

i

(0) +

„

λµ

λ+ s

«n−1
d

ds
Ts

h

T
(n−1)
µ p0

i

(0)

+

n−2
X

l=0

[−(n− 1 − l)]θ
(n−1)
l+1

(λ+ s)n−l
. (5.5)

It follows from (1.6) and (3.20) that

Ts

h

T
(n−1)
µ p0

i

(0) =

Z ∞

0
e−sxT

(n−1)
µ p0(x)dx

=

Z ∞

0
e−sx

"

(−1)n−2

(n− 2)!

d(n−2)

dµ(n−2)
Tµp0(x)

#

dx

=
(−1)n−2

(n− 2)!

d(n−2)

dµ(n−2)

»Z ∞

0
e−sxTµp0(x)dx

–

=
(−1)n−2

(n− 2)!

d(n−2)

dµ(n−2)
[TsTµp0(0)] , (5.6)

and further from (1.7) that

TsTµp0(0) =
Tsp0(0) − Tµp0(0)

µ− s
=
e−µs − e−µu

µ− s
= e−µuu

∞
X

k=1

[−u(s− µ)]k−1

k!
.

(5.7)
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Hence, putting (5.7) into (5.6), we can write the derivative of Ts[T
(n−1)
µ p0](0) as

d

ds
Ts

h

T
(n−1)
µ p0

i

(0) =
(−1)n−2

(n− 2)!

d(n−2)

dµ(n−2)

d

ds
[TsTµp0(0)]

=
(−1)n−2

(n− 2)!

d(n−2)

dµ(n−2)

"

e−µuu

∞
X

k=1

(−u)k−1(k − 1)

k!
(s− µ)k−2

#

.

After taking (n − 2)th order derivative of the expression with respect to µ in square

brackets above, and putting s = µ, we further obtain that

d

ds
Ts

h

T
(n−1)
µ p0

i

(0)
˛

˛

˛

s=µ
=
une−µu

(n− 2)!

n−2
X

l=0

 

n− 2

l

!

(−1)l+1

l + 2
,

and following from (5.5) that

p̂′n−1(µ;u) =

„

λµ

λ+ µ

«n−1
"

−(n− 1)

λ+ µ
T

(n)
µ p0(0) +

une−µu

(n− 2)!

n−2
X

l=0

 

n− 2

l

!

(−1)l+1

l + 2

#

+

n−2
X

l=0

[−(n− 1 − l)]θ
(n−1)
l+1

(λ+ µ)n−l
. (5.8)

Since Tµp0(0) = e−µu, then from (3.20) we have

T
(n)
µ p0(0) =

un−1

(n− 1)!
e−µu ,

and finally (5.8) can be rewritten as

p̂′n−1(µ;u) =

„

λµ

λ+ µ

«n−1
un−1

(n− 2)!
e−µu

"

−1

λ+ µ
+ u

n−2
X

l=0

 

n− 2

l

!

(−1)l+1

l + 2

#

+

n−2
X

l=0

[−(n− 1 − l)]θ
(n−1)
l+1

(λ+ µ)n−l
.

Then (5.1)-(5.3) can be computed accordingly.

Figure 2 shows the covariances between the surplus prior to ruin and the deficit

after ruin when n = 50, 75, 100, respectively, for µ = 1.2, λ = 1 and 0 ≤ u ≤ 20. It is

observed that three covariance curves increase first then decrease as the initial surplus

increases, and the overall covariances are smaller when n is bigger or in other words

the ruin occurs later.
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